An Iteration Method for Common Solution of a System of Equilibrium Problems in Hilbert Spaces
نویسندگان
چکیده
The strong convergence theorem is proved for finding a common solution for a system of equilibrium problems: find u∗ ∈ S : ∩i 1EP Fi ,EP Fi : {z ∈ C : Fi z, v ≥ 0 ∀v ∈ C}, i 1, . . . ,N, where C is a closed convex subset of a Hilbert space H and Fi are N bifunctions from C ×C into R given exactly or approximatively. As an application, finding a common solution for a system of variational inequality problems is given.
منابع مشابه
New hybrid method for equilibrium problems and relatively nonexpansive mappings in Banach spaces
In this paper, applying hybrid projection method, a new modified Ishikawa iteration scheme is presented for finding a common element of the solution set of an equilibrium problem and the set of fixed points of relatively nonexpansive mappings in Banach spaces. A numerical example is given and the numerical behaviour of the sequences generated by this algorithm is compared with several existence...
متن کاملApproximation of fixed points for a continuous representation of nonexpansive mappings in Hilbert spaces
This paper introduces an implicit scheme for a continuous representation of nonexpansive mappings on a closed convex subset of a Hilbert space with respect to a sequence of invariant means defined on an appropriate space of bounded, continuous real valued functions of the semigroup. The main result is to prove the strong convergence of the proposed implicit scheme to the unique solutio...
متن کاملEquilibrium problems and fixed point problems for nonspreading-type mappings in hilbert space
In this paper by using the idea of mean convergence, weintroduce an iterative scheme for finding a common element of theset of solutions of an equilibrium problem and the fixed points setof a nonspreading-type mappings in Hilbert space. A strongconvergence theorem of the proposed iterative scheme is establishedunder some control conditions. The main result of this paper extendthe results obtain...
متن کاملA Hybrid Proximal Point Algorithm for Resolvent operator in Banach Spaces
Equilibrium problems have many uses in optimization theory and convex analysis and which is why different methods are presented for solving equilibrium problems in different spaces, such as Hilbert spaces and Banach spaces. The purpose of this paper is to provide a method for obtaining a solution to the equilibrium problem in Banach spaces. In fact, we consider a hybrid proximal point algorithm...
متن کاملOn Fixed Point Results for Hemicontractive-type Multi-valued Mapping, Finite Families of Split Equilibrium and Variational Inequality Problems
In this article, we introduced an iterative scheme for finding a common element of the set of fixed points of a multi-valued hemicontractive-type mapping, the set of common solutions of a finite family of split equilibrium problems and the set of common solutions of a finite family of variational inequality problems in real Hilbert spaces. Moreover, the sequence generated by the proposed algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011